

Themen des Vortrags

Unfallforschung im Rahmen des GIDAS-Projekts

Elektronische Daten in/aus Unfallfahrzeugen

Prognose von Einzelverletzungen & Verletzungsschweren

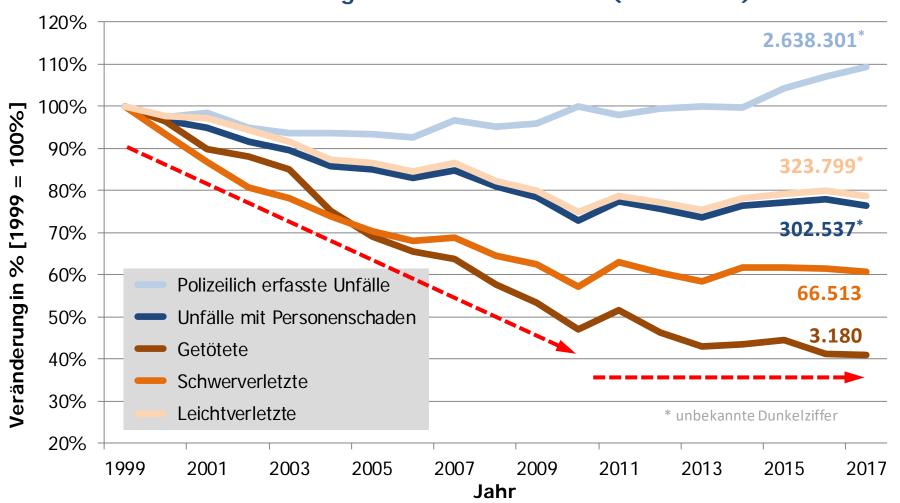
Fragestellungen aus unfallanalytischen Gutachten

Themen des Vortrags

Unfallforschung im Rahmen des GIDAS-Projekts

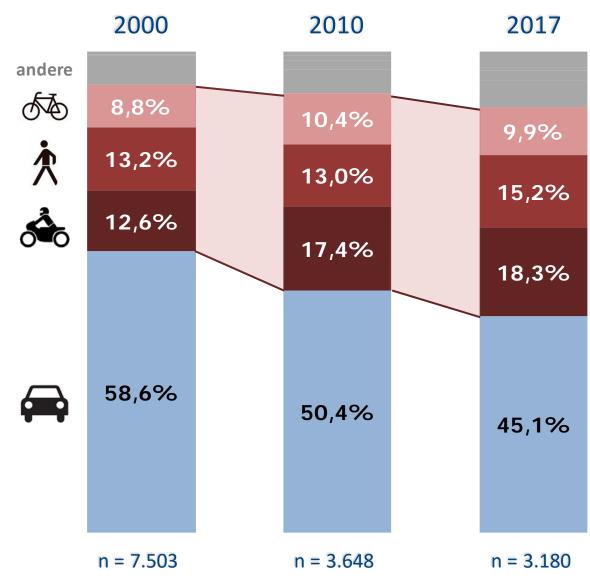
Elektronische Daten in/aus Unfallfahrzeugen

Prognose von Einzelverletzungen & Verletzungsschweren


Fragestellungen aus unfallanalytischen Gutachten

Unfallforschung – Ist das noch notwendig?

Unfälle und Verunglückte in Deutschland (1999-2017)


Aktuelle Situation

Stetige Fortschritte im Bereich der passiven Sicherheit

Stark zunehmende Bedeutung schwacher Verkehrsteilnehmer

trotz oder aufgrund:

- demograph. Wandel
- Pedelecs
- vielen Fahrerassistenzsystemen
- steigender Verkehrsleistung

Anteile der Verkehrsbeteiligungsarten bei Getöteten

Verkehrsunfallforschung an der TU Dresden GmbH (VUFO)

Die **VUFO** ist eine seit 2006 bestehende **Forschungseinrichtung** mit ca. 25 Festangestellten und 35-40 Studenten. (1999 – 2006 am Lehrstuhl Kraftfahrzeugtechnik der TU Dresden)

Tätigkeitsschwerpunkte

Dokumentation von Verkehrsunfällen mit Personenschaden im Rahmen des GIDAS-Projektes

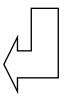
Rekonstruktion & Simulation von Verkehrsunfällen

Statistische Analysen in den Bereichen Fahrzeug- und Verkehrssicherheit, Notfallmedizin, Rettungswesen, Infrastruktur

Erfassung von Normalfahrzuständen (Naturalistic Driving Studien)

Aus- und Weiterbildung, Entwicklung von Software-Tools

GIDAS – German In-Depth Accident Study



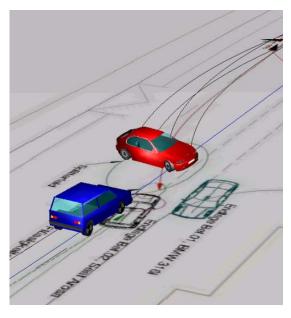
ca. **2.000 Unfälle** mit Personenschaden **pro Jahr** (seit Juli 1999)

GIDAS – Erhebungsmethodik und Umfänge

Alarmierung durch die Polizei und Rettungsleitstellen

Unfalldokumentation an der **Unfallstelle** (ca. 15-20 min nach VKU)

Medizinische Erhebung zusätzlich im Krankenhaus (bzw. per Befragung)


Codierung von durchschnittlich 3.500 Einzelparametern pro Unfall

Anonymisierte **Datenverarbeitung**; **Rekonstruktion** jedes Unfalls

Erstellung einer digitalen Fallakte mit ca. 150-170 Fotos pro Unfall

GIDAS – Erhebungsmethodik und Umfänge

GIDAS ist hinsichtlich der Erhebungsdauer, Datentiefe und Fallzahl die weltweit bedeutendste In-Depth-Unfalldatenbank.

Basierend auf den ausgewählten Erhebungsgebieten, dem definierten Stichprobenplan und dem ganzjährig durchgeführten Schichtsystem sind repräsentative Aussagen für das deutsche Unfallgeschehen möglich.

Die mittlerweile enthaltenen Umfänge erlauben i.d.R. statistisch robuste Analysen zu sehr vielen Fragestellungen der Verkehrssicherheit.

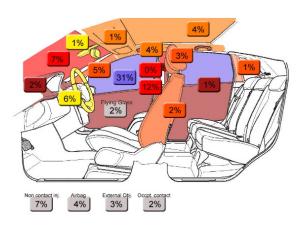
Bsp.: In den bisher 33.500 dokumentierten Unfällen finden sich u.a.:

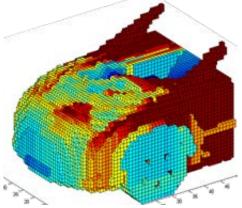
≈ 39.000 PKW (Fahrzeuge)

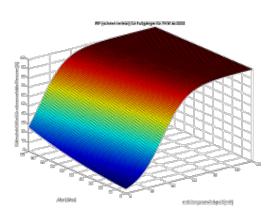
≈ 55.500 PKW-Insassen

(33.000 nicht, 17.600 leicht, 4.500 schwer, 380 tödlich verletzt)

≈ 49.400 Einzelverletzungen von PKW-Insassen


... alle Arten von Kollisionen und Unfallgegnern





GIDAS – Anwendung & Forschungsthemen

- Nutzen & Potentiale von (Kinder-) Rückhaltesystemen
- Fußgänger- und Radfahrerschutz
- Motorradsicherheit
- retrospektive Bewertung von Sicherheitssystemen
- prospektive Bewertung / Potentialabschätzung zukünftiger Systeme
- Ableitung / Klassifikation von Szenarien für HAF
- Passiver Schutzeinrichtungen neben der Fahrbahn
- Prognose-/Prädiktionsmodelle (bspw. Verletzungsrisikofunktionen)

Themen des Vortrags

Unfallforschung im Rahmen des GIDAS-Projekts

Elektronische Daten in/aus Unfallfahrzeugen

Prognose von Einzelverletzungen & Verletzungsschweren

Fragestellungen aus unfallanalytischen Gutachten

Auslesen elektronischer Fahrzeugdaten - Wozu?

- Gewinnung zusätzlicher Daten für die Unfallanalytik (bspw. Kollisionsgeschwindigkeiten, delta-v-Werte)
- Valide Rekonstruktion der Unfalleinlaufphase (bspw. der letzten 5 Sekunden vor der Kollision)
- Erlangung von Informationen zum Verbau aktiver und passiver Sicherheitssysteme
- Verifikation der Aktivierung von Sicherheitssystemen (bspw. Auslösung Multikollisionsbremse, Gurtstraffer etc.)
- Stärkung der Rechtssicherheit im Rahmen der Be- oder Entlastung von Unfallbeteiligten (v.a. Polizei, Sachverständige)

Auslesen elektronischer Fahrzeugdaten – Wie?

Tägliches **Screening** der neuen Unfalldatensätze nach Fahrzeugen mit erheblichen **Deformationen** und/oder **Auslösung irreversibler Systeme**

Recherche zur potentiellen **Auslesemöglichkeit** des Modells unter Berücksichtigung des **Fahrzeugalters** (EDR: MJ>2001 / DTC: MJ>2007)

Vorliegen eines schriftlichen Einverständnisses des Fahrers (= Halter)

Vorbereitung Auslesen (benötigte Adapter, Schlüssel, externe Bestromung)

Auslesen von EDR, Fehlerspeicher & Livedaten (je nach Verfügbarkeit)

Datenspeicherung und **Dokumentation** des Auslesevorgangs

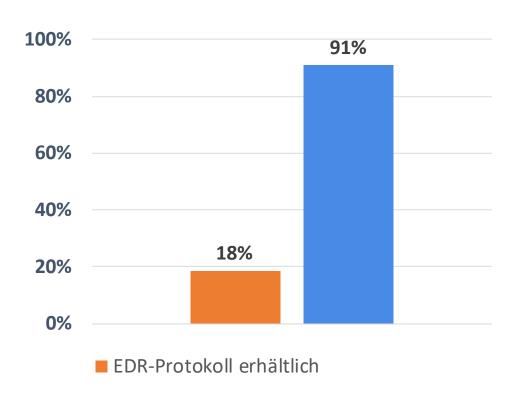
Auslesen elektronischer Fahrzeugdaten – Womit?

Bosch CDR-Tool

Daten des EDR
 (Event Data Recorder)

Autel MaxiSys 906

Universalauslesegerät (identischer Informationsgehalt im Vgl. zu Herstellergeräten)


- Fehlerspeichereinträge (DTC)
 - Umgebungsparameter (Freeze-Frame-Daten)
 - Live- / Echtzeit-Daten

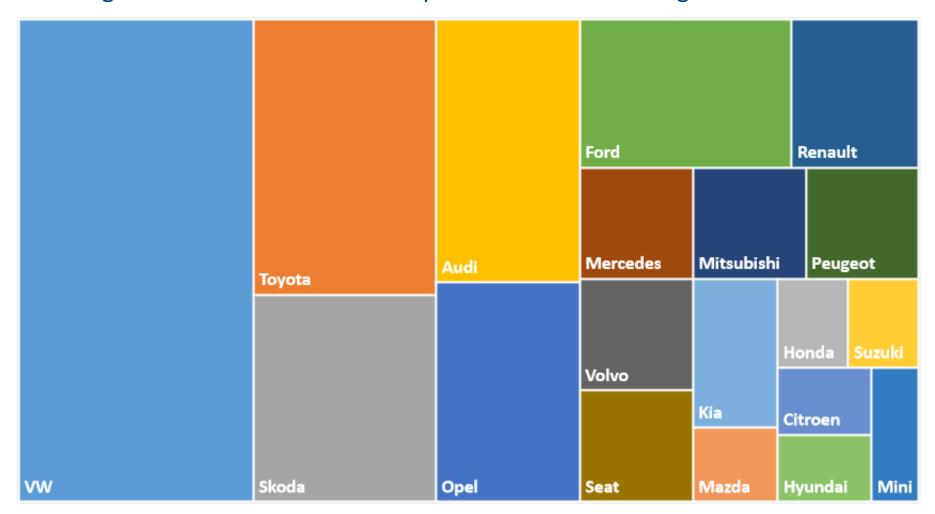
Auslesen elektronischer Fahrzeugdaten – Ergebnisse

76 Auslesungen an verunfallten Fahrzeugen (05/2017 – 08/2018)

9% der Fahrzeuge waren gar nicht auslesbar:

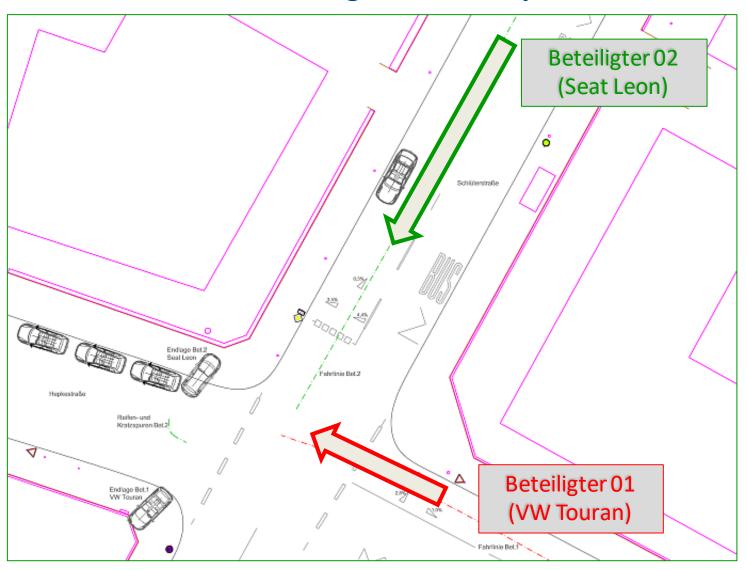
- keine Fehlercodes vorhanden
- Bestromung des Fahr-zeugs aus Sicherheits-gründen nicht möglich

EDR: in Europa nur bei wenigen Herstellern verfügbar


Alle 14 ausgelesenen EDR-Protokolle stammen aus **Toyota-Fahrzeugen**.

Auslesen elektronischer Fahrzeugdaten – Ergebnisse

Erfolgreiches Auslesen des Fehlerspeichers bei 69 Fahrzeugen


Auslesen elektronischer Fahrzeugdaten – Ergebnisse

- ➤ Relevante Erkenntnisse zu Systemauslösungen, Systemverbau (bspw. relevant für GIDAS-Codierung) und Unfallmerkmalen
- Auswahl erhaltener Fehlercodes:
 - "Unfallschwereminderung durch automatisches Bremsen"
 - → Aktivierung AEB-System
 - "Multikollisionsbremse ausgelöst"
 - → essentiell für Verzögerung in der Post-Crash-Phase
 - Auslösung von Gurtstraffern und Airbagsystemen
- Informationen aus den Live-Daten des Fahrzeugs:
 - Anzahl der Überschläge
 - Anzahl der Frontal-, Heck- und Seitenkollisionen
 - Ausstattungsmerkmale (Airbags, FAS, Reifendrücke etc.)

Auslesen elektronischer Fahrzeugdaten – Beispielfall

Auslesen elektronischer Fahrzeugdaten – Beispielfall

VW Touran (1T), EZ 08/2016

- Kollision rechte Seite
- leicht verletzte Beifahrerin
 - kein EDR

Seat Leon (1P), EZ 04/2009

- Frontalkollision
- leicht verletzte Beifahrerin
 - kein EDR

Auslesen elektronischer Fahrzeugdaten – Beispielfall

Fahrzeuginformationen

VIN: VSSZZZ1PZ9R

Seat 2009 (9) 1P - León 2009 > PA

Fehlersuche Uhrzeit: 2017/10/06 09:04

Meilenzahl:

Pfad: Automatische Auswahl > 1P - León 2009 > PA > 2009 (9) > Limousine > CAXC 1.41 TSI 92kW EU4 > Diagnose > Automatischer

Suchlauf > Fehlerkodes >

FREEZE FRAME Daten

05641 Crashabschaltung wurde ausgelöst		Datumsangabe bei VAG
Fehlerstatus	00100000	häufig unplausibel
Fehler Priorität	0	
Frequenz	1	 Datum allerdings für
Wegstrecke,(Km)	103342km	alle Fehlercodes des
Zeitanzeige	0	Unfalls identisch
Datum	2032:14:09	Offians identiseri
Zeit	21:34:40	
U/min	1177 /min	Gelegentlich treten falsche
Last	15.7 %	Bezeichnungen auf
Drehzahl	45.0 km/h	
Temperatur	43 °C	
Temperatur	18 °C	

Auslesen elektronischer Fahrzeugdaten – Hinweise

Auseinandersetzung mit den potentiellen Fehlerquellen notwendig

EDR:

- Herkunft des Signals der Fahrzeuggeschwindigkeit
- unbekannte Toleranzen der Fahrzeuggeschwindigkeitsanzeige
- Beachtung der festgelegten Toleranzen (NHTSA)

DTC:

- Datum teilweise unplausibel/mit Offset (im Fzg identisch)
- Einträge können gelöscht werden (!)
- Überschreiben von Daten nach Wiedereinschalten Zündung
- Unbekannte Bus-Prioritäten, Sendeintervalle, Latenzzeiten, Bus-Auslastungen

Alle elektronischen Daten erfordern eine sachverständige Interpretation und Plausibilisierung!

Auslesen elektronischer Fahrzeugdaten – Ausblick

STATUS QUO

- Sachverständige lesen pro Jahr i.d.R. nur vereinzelte Fahrzeuge aus
- Daten liegen in der Regel lokal und nicht filterbar vor
- Keine umfassende Übersicht über Ausleseversuche möglich
- Aufwändige Verwaltung der teils umfassenden Protokolle

ZIEL

Aufbau einer zentralen, gemeinschaftlich nutzbaren Datenbank

- → Recherche zu erfolgreichen und erfolglosen Ausleseversuchen
- → Durchsuchen der verfügbaren (anonymisierten) Dateien
- → Eingabe relevanter Parameter und (teil-)automatisiertes Einlesen von Protokollen durch registrierte Nutzer
- → Fortsetzung der Auslesungen an Unfallfahrzeugen durch die VUFO (realistisch ca. 100-120 Fahrzeuge / Jahr bis 2020)

Auslesen elektronischer Fahrzeugdaten – Ausblick

Geplante Inhalte der Datensammlung:

- Datenbank mit Filtermöglichkeiten, bspw. hinsichtlich:
 - Fahrzeugdaten: Hersteller, Modell, Modelljahr, Existenz von elektronischen Daten etc.
 - Unfalldaten: Unfalltyp, Anprallkonstellation, EES etc.
- EDR-Protokolle (bspw. als PDF)
- Fehlerspeichereinträge und Freeze-Frame-Daten (bspw. als PDF)
- (optional) Unfallrekonstruktionen (bspw. PC-Crash-Datei)
- *(optional)* Unfallskizzen und -bilder

Alle Daten werden nur in anonymisierter Form vorliegen!

(Keine Ablage personenbezogener Daten wie Namen, Adressen, Geburtsdatum,
Gesichter, Fahrgestellung / Drüfung durch VIJEO

→ Sicherstellung / Prüfung durch VUFO

Auslesen elektronischer Fahrzeugdaten – Ausblick

Potentieller Nutzen der Datensammlung:

- Vorab-Abfrage/Informationen zu bestimmten Fahrzeug-Modellen
 - → Vermeidung "erfolgloser" Auslesungen (ohne verwertbare Erkenntnisse)
 - → **Abschätzung** zu verfügbaren Daten (v.a. Fehlerspeichereinträge)
- Nutzung der Informationen für Datenanalysen und Auswertungen hinsichtlich Systemverbau und -auslösung
- Vergrößerung der Datenbasis und Expertise zu Auslesungen (inkl. der Limitationen und Randbedingungen)

STATUS: Existenz einer Offline-Datenbank mit ca. 300 EDR-Protokollen (GIDAS, D, EU, USA) und Codierungen in Zusammenarbeit mit Prof. Dr. Burg / IbB

Themen des Vortrags

Unfallforschung im Rahmen des GIDAS-Projekts

Elektronische Daten in/aus Unfallfahrzeugen

Prognose von Einzelverletzungen & Verletzungsschweren

Fragestellungen aus unfallanalytischen Gutachten

Adressierte Fragestellungen:

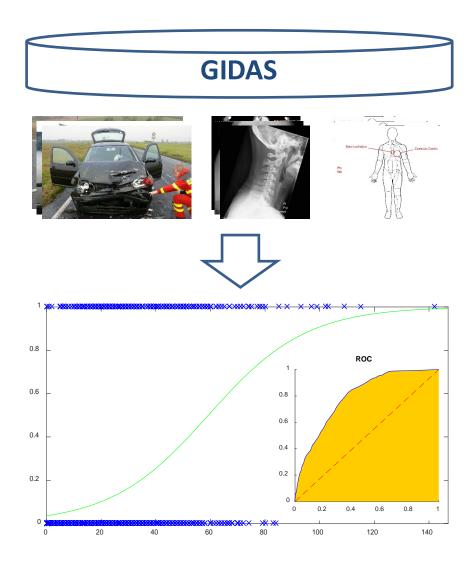
- Welche Verletzungsschweren treten auf, wenn ein Fußgänger mit einer Geschwindigkeit von x km/h frontal von einem PKW angefahren wird?
- Welche Reduktionen von leicht, schwer bzw. tödlich verletzten PKW-Insassen sind durch die Einführung von AEB-Systemen zu erwarten?
- Sind die von den Unfallbeteiligten angegebenen Verletzungen bei der vorliegenden Unfallkonstellation wahrscheinlich/möglich?

• ...

Ziel: Vorhersage und/oder Plausibilisierung von Verletzungsmustern

Idee: Erstellung statistischer Prädiktionsmodelle zur Berechnung von

Verletzungswahrscheinlichkeiten aus Unfalldatenbanken


Analyse von Verkehrsunfällen und den dabei entstandenen Verletzungsmustern

zur Prädiktion von Verletzungswahrscheinlichkeiten

Vorhersage der zu erwartenden
Verletzungsschwere in
Abhängigkeit relevanter
Einflussparameter
(Anprallschwere, Anprallseite,
Fahrzeugklasse, Insassenalter,
Sitzposition)

Prädiktion der **Wahrscheinlichkeiten** für verschiedene Verletzungsschweren für jeweils:

5 Körperregionen

Kopf und Gesicht

Hals

Torso (Thorax, Abdomen, Becken) obere Extremitäten untere Extremitäten

2 Altersgruppen

Erwachsene (15-59 Jahre), Ältere (60+ Jahre)

4 Anprallkonstellationen

Front, Seite-stoßzugewandt, Seite-stoßabgewandt, Heck

PRAKTISCHE ANWENDUNG: Integration in die Interdisziplinäre Unfallanalyse der Accidenta GmbH

Implementierung der Modelle in das Accidenta-Tool

Übernahme der Unfallparameter bzw. individuellen und situativen Parameter aus dem technischen Gutachten

Berechnung der Wahrscheinlich-keiten für fünf Körperregionen

Visualisierung im Accidenta-Report

Ergebnis: Statistische Prädiktionsmodelle auf Basis von

über 30.000 rekonstruierten Verkehrsunfällen zur:

- Plausibilisierung von Verletzungsmustern
 ("Sind die behaupteten Verletzungen wahrscheinlich?")
- Abschätzung notwendiger Behandlungsmaßnahmen und -dauern & Prognose der zu erwartenden Kosten ("Wie und wie lange wird die verletzte Person bei der prognostizierten Verletzungsschwere behandelt? "Welche Kosten sind dabei zu erwarten?")

Grenzen der Modelle

Es handelt sich um **statistische Verfahren** – Unfälle unterliegen jedoch vielen individuellen und situativen Varianzen.

Sonderfälle können nicht prädiziert werden. Dazu gehören bspw. Überschläge, Unterfahren, Eindringung kleiner Objekte etc.

Die erzeugten Modelle gelten für angeschnallte Insassen.

Für **Kinder unter 15 Jahren** sind die Fallzahlen (noch) nicht ausreichend für robuste Vorhersagemodelle (zusätzliche CRS).

Themen des Vortrags

Unfallforschung im Rahmen des GIDAS-Projekts

Elektronische Daten in/aus Unfallfahrzeugen

Prognose von Einzelverletzungen & Verletzungsschweren

Fragestellungen aus unfallanalytischen Gutachten

Fragestellungen aus unfallanalytischen Gutachten

Idee: Unterstützung von Sachverständigen bei Einzelfall-

gutachten auf Basis statistischer Analysen von

Unfalldatenbanken

Fragestellungen, die sich bspw. mit GIDAS beantworten lassen:

- Potentielle Unterschiede in der Verletzungsschwere bei gegurteten vs. nicht gegurteten Fahrzeuginsassen
- Existenz bestimmter Verletzungen in Abhängigkeit der Anprallkonstellation und Unfallschwere
- Indizien f
 ür suizidales Verhalten

• ...

STATUS: Pilotprojekt mit ausgewählten Gutachtern

- → inkl. Prüfung der Sinnhaftigkeit der Anfrage
- → jeweils Abstimmung mit GIDAS Lenkungsausschuss

